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Abstract. This paper deals with the numerical solution of a singu-
larly perturbed convection diffusion problem with a non-local bound-
ary condition. The scheme uses the non-standard finite difference
scheme to discretize the derivatives. Using some properties of the
discrete operator the stability of the scheme is studied and a first or-
der accuracy is established from the convergence analysis. Richard-
son extrapolation is then applied on the scheme to increase the first
order accuracy to a second order. Numerical experiments are con-
ducted to demonstrate the applicability of the scheme before and
after extrapolation.
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1. Introduction

Consider the singularly perturbed problem

Lεu :≡ εu′′ + a(x)u′ = f(x), x ∈ Ω = (0, l) (1)

subject to the non-local boundary condition

εu′(0) = µ, u(0) + γu(l1) = Bu(l) + d, l1 ∈ Ω, (2)
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where ε is the perturbation parameter and satisfies ε ∈ (0, 1]. The variables

µ, B, γ, d, l1 and l are constants. The source term f(x) and the coefficient

function a(x), are smooth and bounded, a(x) satisfies a(x) ≥ α > 0 where

α is the lower bound of a(x). This ensures that, for small values of the

perturbation parameter, the solution u(x) has a boundary layer at x = 0.

Generally, the numerical solutions for singularly perturbed problems

are not straight forward, because of the multi-scale character which appears

their solutions. Even for the least complicated problem classical numerical

methods tends to be less efficient.

Researchers in this field either fit the mesh to suit the problem under

study or introduce a new coefficient function into the classical numerical

schemes to address the issue with unsatisfactory result, see for example the

articles [15, 16] and the books [17, 18, 22] for the various fitted numerical

methods.

Evidently, the numerical solutions for both stationary and time- de-

pendent singularly perturbed convection diffusion problems with either ho-

mogeneous or Dirichlet boundary conditions has been studied extensively,

[1, 4, 8, 9, 10, 13, 14, 19, 20, 23]. However same can not be said for prob-

lems with non-local boundary conditions, until recently, see for instance the

articles [2, 3, 5, 11, 12] and the references there-in.

To the best of our knowledge the non-standard finite difference scheme

has only been used by [12] to propose a first order scheme, and again the

authors considered an integral boundary. Thus a second order numerical

scheme is proposed in this sequel. The scheme employs a fitted operator

finite difference scheme on appropriate denominator function to solve the

convection diffusion problem.

A first order accuracy independent of the perturbation parameter is
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obtained in the maximum norm. Richardson extrapolation is then applied

to enhance the first order accuracy to a second order.

The paper unfolds as follows: In Section 2, some properties of the

continuous problem which show the existence and uniqueness of the solution

to problem (1)-(2) are presented. The numerical scheme is presented in

Section 3. This is followed by the stability and the convergence of the

scheme in Sections 4 and 5 respectively.

In Section 6, Richardson extrapolation is applied on the scheme to en-

hance the accuracy, followed by the numerical simulations in Section 7 with

concluding remarks and future directions of this research being presented

in the last section.

2. Bounds on the solution and its derivative

The bounds on the solution to problem (1)-(2) and its derivatives will

be derived in this section. The discrete versions of these bounds will play

vital roles in the analysis of the numerical methods we shall see in later

sections.

Lemma 2.1. (Continuous minimum principle). Let ψ(x) be a smooth

function which satisfies

ψ(x) ≥ 0,

x ∈ ∂Ω and

Lεψ(x) ≤ 0,

x ∈ Ω.

Then ψ(x) ≥ 0 ∀ x ∈ Ω̄.

Proof. Let (x∗) be a point in Ω such that, ξ(x∗) < 0 and

ψ(x∗) = min
(x)∈ Ω̄

ψ(x).
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It is clear that (x∗) 6∈ ∂Ω. If (x∗) ∈ Ω, then we have

Lεψ(x∗) = εψ′′(x∗) + a(x∗)ψ′(x∗),

since ψ′′(x∗) ≥ 0 and ψ′(x∗) = 0, thus Lεψ(x∗) ≥ 0, which is a contradic-

tion.

Therefore Ψ(x) ≥ 0, ∀ (x) ∈ Ω̄.

Lemma 2.2. Suppose a and f are continuous and 1 + γ − B 6= 0. The

solution u(x) of the continuous problem and its derivatives satisfy

||u||∞ ≤ C, (3)

where

C = c−1
0 [|d|+ α−1(|B|+ |γ|)(|A|+ ||f ||1)]

+ α−1(|A|+ ||f ||1),

with c0 = |1 + γ −B| and ||f ||1 =

∫ l

0

|f(x)|dx, and

|u(j)(x)| ≤ C
(

1 + ε−j exp

(
−αx
ε

))
, ∀ x ∈ Ω̄, (4)

where j satisfies the relation 1 ≤ j ≤ 6.

Proof. To prove the inequality (3), we apply integration factor techniques

to equation (1) to obtain

u′(x) = u′(0) exp

(
−ε−1

∫ x

0

a(κ)dκ

)
+ ε−1

∫ x

0

f(s) exp

(
−ε−1

∫ x

s

a(κ)dκ)

)
ds. (5)

Applying the boundary condition at x = 0 gives

u′(x) =
µ

ε
exp(−ε−1

∫ x

0

a(κ)dκ)+ε−1∫ x

0

f(s)exp(−ε−1

∫ x

s

a(κ)dκ)ds. (6)
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Further, we integrate (6) from 0 to x to obtain

u(x) =u(0)+
µ

ε

∫ x

0

exp

(
−ε−1

∫ K

0

a(κ)dκ

)
dK

+ ε−1

∫ x

0

dsf(s)

∫ x

s

exp

(
−ε−1

∫ K

s

a(κ)dκ

)
dK. (7)

Similar to the proof of Lemma 1 in [3] we take the norm on both sides of

equation (7) to obtain

|u(x)| ≤ |u(0)|+ |µ|α−1 + α−1

∫ l

0

|f(s)|ds. (8)

To derive the bound of |u(0)| we employ the boundary condition at

x = l and the ideas in [3] to obtain

|u(0)| ≤ c−1
0 [|d|+ α−1 (|B|+ |γ|) (|µ|+ ||f ||1)], (9)

which leads to (3) when combined with (8).

To prove (4) for j = 1, similar to [3] we take the norm on both sides of (6)

and simplify further to obtain

|u′(x)| ≤ |µ|
ε

exp(−αx/ε) + α−1||f ||∞. (10)

The proof of the higher order derivatives can be obtained in a similar man-

ner after differentiating equation (1).

In the next section, a fitted operator finite difference scheme is de-

signed to solve the continuous problem (1)-(2).

3. The numerical method

Here the problem (1)-(2) is discretized via a fitted operator finite dif-

ference scheme. The domain Ω is subdivided into the discrete domain

Ω̄n = {xi = ih, i = 0, 1, 2, ..., n}.
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Now using finite differences and the theory of denominator functions

we discretize the continuous problem to obtain the discrete problem

Lnεui :≡ ε

(
ui+1 − 2ui + ui−1

φ2
i

)
+

ai

(
ui+1 − ui

h

)
= fi, i = 1, 2, 3, ..., n− 1, (11)

along with the discrete boundary conditions

ε
u0 − u−1

h
= µ,

un =
1

B
[u0 + γul1 − d] . (12)

The denominator functions φ2
i is given by

φ2
i =

hε

ai

(
1− exp

(
−aih

ε

))
,

and φ2
i satisfies

φ2
i = h2 +O

(
h3

ε

)
.

In matrix notation, the scheme (11)-(12) comprises of a tri-diagonal

matrix A and two vectors U and F given by

AU = F,

with the dimensions Rn × Rn and Rn respectively. Their entries are as

follows:

F0 = µ

Fi = fi i = 1, 2, 3, ..., n− 1,

Fn = fn −
ε

φ2
i

un+1

and

Aij =


A0,0 =

ε

h
A0,1 =

ε

h
r−i , i = 2, 3, ...n− 1, j = i− 1,

rci , i = 1, 2, ...n− 1, i = j,

r+
i , i = 1, 2, , ...n− 2, j = i+ 1,
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where the r−i , r
c
i and r+

i are given by

r−i =
ε

φ2
i

,

rci = −2
ε

φ2
i

− ai
h
,

r+
i =

ε

φ2
i

+
ai
h
,

respectively.

Next we prove some properties of the scheme which will play a vital

role in the in the analysis of the scheme in subsequent sections.

4. Stability of the Scheme

In this section, two lemmas which indicate the stability of the scheme

are presented.

Lemma 4.1. (Discrete minimum principle). Let Ψi be a mesh function

which satisfies

Ψ0 ≥ 0,

Ψn ≤ 0 and

LnεΨi ≤ 0, i = 1, 2, ...n− 1

then Ψi ≤ 0, ∀i.

Proof. Let j ∈ Ω̄n such that

Ψj = min
(i)∈Ω̄n

Ψi and Ψj < 0.

Then 1 ≤ j ≤ n− 1 and Ψj+1 −Ψj > 0, Ψj −Ψj−1 > 0. Thus

LnεΨj ≡ ε

φ2
i

(Ψj+1 − 2Ψj + Ψj−1) + aj
Ψj+1 −Ψj

h

=
ε

φ2
i

[(Ψj+1 −Ψj)− (Ψj −Ψj−1)] + aj
Ψj+1 −Ψj

h
≥ 0,

which is a contradiction, therefore, Ψj ≥ 0, and hence Ψi ≥ 0, ∀ i.
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An immediate consequence of this discrete minimum principle is the

stability of the scheme (11)-(12) which is presented in the next lemma.

Lemma 4.2 (Stability estimate). The solution ui of the discrete problem

(11)-(12) satisfies the estimate

|ui| ≤ α−1 max
i∈Ω̄n

|Lnεui|+ max
i∈Ω̄n

(|µ|, |B|) , B = B−1 [u0 + γul1 − d] .

Proof. Let Ψ±i be a barrier function given by

Ψ±i = M ± ui,

where M is given by

M = α−1 max
i∈Ω̄n

|Lnεui|+ max
i∈ω̄n

(|µ|, |B|).

At the boundaries we have

Ψ±0 = M ± u0 = M ± µ ≥ 0,

Ψ±n = M ± un = M ± B ≥ 0.

On the domain Ωn we obtain

LnεΨ±i= α−1max
i∈Ω̄n
|Lnεui| ± Lnεui ≤ 0.

From Lemma 4.1, Ψi ≥ 0, ∀ (xi) ∈ Ω̄n, as required.

The error associated with the above disrectization process is estimated

in the next section.

5. Error estimate

Let Ui and ui as the numerical and the exact solutions of the discrete
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problem (11)-(12). The truncation error of the scheme (4)-(5) is given by

Lnε (Ui − ui) = LnεUi − Lnεui

= fi − Lnεui = Lεui − Lnεui

= εu′′i + aiu
′
i −
[
ε

(
ui+1 −2ui + ui−1

φ2
i

)
+ai

(
ui+1 − ui

h

)]
, i = 1, 2, · · · , n− 1. (13)

Using a truncated Taylor series expansions of the terms ui+1 and ui−1

reduces equation (6) into

Lnε (Ui − ui) = εu′′i −
ε

φ2
i

(
h2u

′′

i +
h4

12
uivi + ...

)
− ai

h

2
u′′i + ...

Applying series expansion of the denominator function and further simpli-

fication yields

Lnε (Ui − ui) = − ε

2.3!
h2uivi −

ai
2
hu′′i −

ai
4!
uiv + ...− ai

h

2
u′′i

From a(x) > α, Lemma 2.2 and observing that as ε→ 0 all the exponential

terms vanishes (see [20] for proof) we obtain

|Lnε (Ui − ui)| ≤ Ch.

By Lemma 4.2 we obtain the result

|Ui − ui| ≤ Ch, (14)

where C is a constant independent of the perturbation parameter ε.

The error at the boundaries is estimated as follows:

U0 − u0 = −εux(0)− µ

εu(0)−
(
ε

(
u1 − u0

h

))
.

Applying Taylor series expansions yields

U0 − u0 = εu′0 − ε
(
u′0 +

h

2
u′′0 +

h2

3!
u′′0 + ...

)
(15)
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Simplifying further and then applying Lemma 2.2 yields

|U0 − u0| = −εh
2
u′′0 − ε

h2

3!
u′′0 + ... ≤ Ch.

We summarize the above discussion in the following theorem.

Theorem 5.1. The solution ui of the scheme 11-12 satisfies

sup
0<ε≤1

max
0≤i≤n

|Ui − ui| ≤ Ch,

where C is a constant independent of ε and h.

In the next section Richardson extrapolation is employed to increase

the order of the fitted operator finite difference scheme.

6. Richardson extrapolation

Suppose Ω2n satisfies Ωn ⊂ Ω2n where Ωn is as defined in Section 3

and Ω2n obtained after the mesh widths h has been halved. We denote the

numerical solution obtained with the mesh Ω2n by Ũi. From Theorem 5.1,

we have

Ui − ui ≤ Ch+ R̄n, (16)

Ũi − ui ≤ C

(
h

2

)
+ R̄2n, (17)

where R̄ν is the remainder term of the error. Subtracting the inequality

(17) from (16) gives the extrapolation formula

Ui − ui − (2Ũi − 2ui) = R̄ni − 2R̄2n
i (18)

Ui = 2Ũi − ui, (19)

notice that Ui is the numerical solution after extrapolation at the interior

mesh point.

To compute the numerical solution U0 at the boundary x = 0 we use

the extrapolation formula,

U0 = 2Ũ0 − U0 (20)
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and to calculate the error we use the formula

U0 − u0 = 2

[
εu′0 − ε

(
u′0 +

h

4
u′′0 +

h2

4.3!
u′′0 + ...

)]
− (U0 − u0)

= 2

[
−ε
(
h

4
u′0 +

h2

4.3!
u′′0 + ...

)]
− ε

(
h

2
u′′0 +

h2

3!
u′′0 + ...

)
.

Further simplification yields

|U0 − u0| ≤ Ch2. (21)

At the interior mesh points, the error after the extrapolation satisfies

Lnε (Ui − ui) = 2Lnε (Ũi − ui)− Lnε (Ui − ui)

From series expansions and simplifications the error reduces to

Lnε (Ui − ui) = 2

[
ε

48
uivi h

2 − ai
4
hu′′i −

ai
8.24

h3uivi − ai
(
h

4
u′′i + ...

)]
−
(
ε

12
uivi h

2 − ai
2
hu′′i −

ai
24
h3uivi − ai

(
h

2
u′′i + ...

)
.

Simplifying further and applying Lemma 4.2 gives the main result in the

theorem below.

Theorem 6.1. Let ui be the exact solution of the continuous problem (1)-

(2) and Ui be the numerical solution obtained via (18). Then the error is

of the form

sup
0<ε≤1

max
0≤i≤2n

|Ui − ui| ≤ Ch2.

Next, we use a test example to demonstrate the scheme in practice.

7. Numerical Results

In this section, we apply the scheme on a test example to check the

applicability of the proposed scheme. The numerical result will comprise

of computing the maximum pointwise error and the numerical rate of con-

vergence in each example.
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In the example which follows, to compute the maximum pointwise

errors Enε and Enε , before and after extrapolation respectively , we employ

the formulae

Enε = max
0≤i≤n

|Ui − ui| , (22)

and

Enε = max
0≤i≤2n

|Ui − ui| . (23)

Notice that the subtraction is between the numerical solution and the

exact solution respectively, in both before extrapolation and after extrapo-

lation formulae.

From the maximum pointwise errors, we obtain the ε-uniform point-

wise errors En and En before and after extrapolation by

En = max
0<ε≤1

Enε

and

En = max
0<ε≤1

Enε .

Further the numerical rate of convergence is calculated from the for-

mulae

r1 = log2

(
En
E2n

)
and r2 = log2

(
En
E2n

)
and the ε-uniform rate of convergence with

R1 = max
0<ε≤1

r1, R = max
0<ε≤1

r2,

respectively.

Example 7.1 [6]. We consider the problem

εu′′(x) + 2u′(x) = (ε− 2)exp(−x), 0 < x < 1,

u(0) =
1

ε
, u(0)− 1

3
u

(
1

4

)
= 1.



A second order numerical scheme for a singularly perturbed 13

The exact solution is given by,

u(x) = p1 + p2 + e−2x/ε + e−x,

where

p1 = −3

7

[
e−1 +

1

3
e−1/4 +

(
1 + e−2/ε +

1

3
e−1/(2ε)

)
p2

]
and

p2 = −1 + ε

2
.

Table 1: Maximum pointwise error and rate of convergence for

Example 7.1 before extrapolation

ε n=16 32 64 128 256 512 1024

10−2 1.51E-02 6.42E-03 2.11E-03 5.87E-04 1.51E-04 3.81E-05 9.53E-06
1.2348 1.6026 1.8467 1.9586 1.9893 1.9971

10−4 1.80E-02 9.41E-03 4.80E-03 2.41E-03 1.20E-03 5.84E-04 2.77E-04
0.9364 0.9722 0.9932 1.0108 1.0344 1.0780

10−6 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04
0.9341 0.9676 0.9840 0.9922 0.9964 0.9987

10−8 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04
0.9341 0.9676 0.9840 0.9922 0.9964 0.9987

10−10 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04
0.9341 0.9676 0.9840 0.9922 0.9964 0.9987

10−12 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04
0.9341 0.9676 0.9840 0.9922 0.9964 0.9987

...
...

...
...

...
...

...
...

10−20 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04
0.9341 0.9676 0.9840 0.9922 0.9964 0.9987

En 1.80E-02 9.45E-03 4.83E-03 2.44E-03 1.23E-03 6.16E-04 3.08E-04

R1 0.9341 0.9676 0.9840 0.9922 0.9964 0.9987
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Table 2: Maximum pointwise error and rate of convergence for

Example 7.1 after extrapolation

ε n=16 32 64 128 256 512 1024

10−6 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9133 1.9122 1.7923 1.4129 0.7810 0.2857

10−8 9.30E-05 2.45E-05 6.28E-06 1.59E-06 4.03E-07 1.03E-07 2.82E-08
1.9264 1.9633 1.9799 1.9826 1.9622 1.8715

10−10 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

10−12 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

...
...

...
...

...
...

...
...

10−20 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

10−24 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

10−28 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08
1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

En 9.30E-05 2.45E-05 6.27E-06 1.59E-06 3.99E-07 1.00E-07 2.51E-08

R1 1.9265 1.9638 1.9820 1.9910 1.9952 1.9964

Fig. 1: Loglog plot of the maximum pointwise errors of Example 7.1

before extrapolation
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Fig. 2: Plot of the exact, numerical solution and the error of Example 7.1

for n = 128 and ε = 10−24

Fig. 3: Loglog plot of the maximum pointwise errors of Example 7.1 after

extrapolation
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8. Conclusion

A second order numerical scheme which is independent of the pertur-

bation parameter has been proposed in this paper to solve a singularly per-

turbed convection diffusion problem with non-local boundary conditions.

The scheme employed a fitted operator finite difference scheme for the dis-

cretization and analysed it for convergence.

The analysis resulted in a first order accuracy and later improved to a

second order by the application of Richardson extrapolation. The scheme

was then tested on an example to demonstrate it in practice and the results

were presented in Tables 1 and 2.

In each table, the maximum pointwise error and the numerical rate

of convergence for different values of ε and n were displayed. The rates of

convergence in the Tables 1 and 2 were in accordance with the Theorems

5.1 and 6.1, respectively.

Figures 1 and 3 displayed the log-log plot of the maximum pointwise

errors before and extrapolation. Clearly, the errors were independent of ε.

Also, from Figure 2, one can confirm that there is no significant difference

between the numerical solutions and the exact solution since the errors were

on the zero mark.

Currently the scheme is being tested on delay problems with non-local

boundary conditions.

Acknowledgement. We would like to express our sincere gratitude to the
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paper.
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